FRICTION 3.0

FRICTION ANALYSIS: BLOCK ON AN INCLINED SURFACE

Version 3.0 Programmed by Hussam Dandashli

INTRODUCTION

The Friction Analysis program analyzes a block on an inclined surface with adjustable roughness, and provides various information about its status (i.e. tipping or slipping) under the selected loading and surface conditions.

When the program starts, the screen will look similar to **Fig. 1** under the default parameters, which can be called by choosing option 1 from menu "Edit".

Fig. 1. Default setting.

The program is interactive. The surface slope, block size, center of gravity, point of application and direction of the force applied can all be interactively changed with the aid of the mouse (selecting and "dragging" with mouse button down). The new configuration will be drawn as soon as the mouse button is released.

The program has three functions:

1- Setting parameter values:

The following are the default values set for the various program parameters at initialization:

Surface roughness (**Ms**) = 0.900, Surface slope (**angS**) = 30 degrees, Weight of block (**W**) = 147.00 units, External force value (**P**) = 100.00 units, Force direction (**angP**) = 20.00 degrees, Gravitational acceleration (**g**) = 9.80. The numerical values for these parameters can be changed by selecting the appropriate option from the menu "Edit".

Edit	
Set Default	
Set Parameters	
Сору	жC
Invert Screen	
Fig. 2.1 Ed	lit menu

Set Default will restore initial parameters, while Set Parameters... will give the user the option to change some design parameters shown in Figure 2.2.

Fig. 2.2 Edit menu options

Some of the above parameters can be changed interactively with the mouse:

a- Application point of applied force :

Dragging the arrow tip while holding the button down will change the point of application to the desired location when the mouse button is released.

b- Direction of applied force:

The direction of the force can be changed by dragging the arrow tail to the orientation desired.

c- Angle of inclination:

The incline slope can be varied by dragging the square at **O2** with the mouse to the desired location.

d- Location of center of mass:

The center of mass can be dragged to any point on the block, hence creating a non-homogeneous block.

e- Size of the block:

The dimension of the block can be altered by dragging point 3, the upper right corner, .

The parameters can be reset at any time to the default values from the first option of the menu "Edit".

2- Analysis

Analysis includes finding the point of contact of the block on the surface, the numerical values for the normal and friction forces, magnitudes of the applied force to cause impending motion, and the animation of the motion in the case of tipping or sliding. This is done automatically whenever any parameter is altered. The other two options were designed to enhance the visualization by animating the impending motion or by reducing unwanted numbers on the

screen or showing them. As the block start to rotate, the initial position of the force and center of gravity will be shown on the screen.

Analysis		
Block Status	жI	
Show Contact Forces		
Show (N, f) Resultant		
Motion Criteria		
Animate	ЖA	
Hide Numbers		

Write Output

Fig. 3.1 Analysis options.

Fig 3.2 Initial position of block before rotation.

3- Visualization

Messages about the status of the block and the drawing of the friction and normal forces will appear if the "Block Status" option of the menu "Analysis" is chosen. The arrows representing the forces can be removed if the option "Hide Normal" from menu "Analysis" is chosen.

Fig. 4.1 Requesting information about the status of the block

As the applied force increases in magnitude, the block might start moving by either slipping or rotating and eventually tipping over as in **Figs 4.2** and **4.3**.

Fig. 4.2 Block starts to move.

Fig. 4.3 Block will tip over.

One look at the information displayed from "Motion Criteria" option from "Analysis", Fig. 4.4, can aid in predicting what will happen if the force magnitude is increased.

Information		
Parameter Values for Impending Motion :		
Slipping to left: P = 36.00, angP = 200.0, N = 121.06, Ff = 108.95 Slipping to right: P = 164.82, angP = 20.0, N = 121.06, Ff = 108.95		
Tipping about 1 : P = 33.63, angP = 200.0, N = 121.47, Ff = 106.61 Tipping about 2 : P = 178.14, angP = 20.0, N = 158.24, Ff = -101.93		
*** Tipping case is dominant: Ff < Ms*N (i.e. Block will not slip!) ***		
Currently : P = 100.000, angP = 20.0, N = 144.671 (Friction force)Ff = 24.981, Ms * N = 130.203		

Fig. 4.4 Information window requested by "Motion Criteria".

If the block moves, the program will automatically animate its motion. Further animation can be requested from the menu "Analysis".

In addition, a grid can be displayed if desired by selecting the proper item in the menu "Grid".

SUMMARY OF MENU OPTIONS:

Apple Menu

About...: Shows logo and credits. Help...: Displays a short on-line manual.

<u>File Menu</u>

File		
Ope	n	#0
Sau	e	ЖS
Rea	d Text	
Ехр	ort as PICT	₩E
Quit	t	жQ

Open... : Loads an input file.

Save... : Saves current settings as an input file.

Read Text... : Displays any text file in the console window.

Export as PICT... : Saves a snap shot of the screen as a PICT file. Quit: Terminates the program.

<u>Edit Menu</u>

Edit	
Set Default	
Set Parameters	
Сору	жC
Invert Screen	

Set Default: Initializes the program to the default parameters.

Set Parameters: changes the current parameters according to Fig. 2.2.

Copy...: Copy a selected rectangle to the clipboard.

Invert Screen : Toggles the background color between black and white.

Analysis Menu

Analysis

Block Status	36	
Show Contact Forces		
Show (N, f) Resultant		
Motion Criteria		
Animate	≋A	
Hide Numbers		

Write Output

- Block Status: Displays a message containing the status of the block under the loading and surface conditions. It also draws arrows representing the normal and friction forces.
- Hide/Show Contact Forces: Hides/shows the normal and friction force arrows at the point of contact.
- Hide/Show (N, f) Resultant: Hides/shows the normal and friction force resultant at the point of contact.
- Motion Criteria: Calculates current normal and friction force magnitudes and also calculates the forces needed for impending motion.
- Animate: Animates the motion of the block in the cases of tipping or sliding. This option will be inactive if the block doesn't tip or slide.
- Hide/Show Numbers: Removes/shows all numbers and letters.
- Write Output: writes the analysis information to a text file.

<u>GRID Menu</u>

Grid	
Grid Size	
Grid	
Move Inclind UP	æυ
Move Inclind Down	₩D

Grid Size: Specify any desired grid size.

Show/Hide Grid: Draws/Hides a grid in the design area.

Move Inclind UP: Shifts the inclind upwards one grid unit.

Move Inclind Down: Shifts the inclind downwards one grid unit.

EQUATIONS USED:

1- Point of contact, q, relative to corner 1 of the block:

$$q = \frac{\left(-P\left[\langle xP-x \underline{1}.sin \widehat{P} + \langle yP-y \underline{1}.co \widehat{S} \right] + W[xG-x \underline{1}]\right)}{\left\langle \langle P.sin(\widehat{S}-\widehat{P}) + W.co \widehat{S} \rangle \rangle}$$

2- Impending Tipping about i (i=1 or 2):

$$P_{i} = \frac{W(xG - xi)}{\left[\langle xP - x \rangle \sin \widehat{P} - \langle y1 - y \rangle \cos \widehat{P} \right]}$$
$$F_{fi} = -P.\cos \widehat{P} - \widehat{S} + W.si\widehat{B}$$
$$N_{i} = P.sin\widehat{S} - \widehat{P} + W.co\widehat{S}$$

3- Impending Slipping in direction of i:

$$P_{1} = \frac{\left[-W.(\mu_{s}.\cos{\widehat{s}} - \sin{\widehat{s}})\right]}{\left[\mu_{s}\sin{\widehat{s}} - \widehat{P}\right] + \cos{\widehat{s}}(-\widehat{P})} P_{2} = \frac{\left[W.(\mu_{s}.\cos{\widehat{s}} + \sin{\widehat{s}})\right]}{\left[\mu_{s}\sin{\widehat{p}} - \widehat{S}\right] + \cos{\widehat{s}}(-\widehat{P})}$$
$$P_{2} = \frac{\left[W.(\mu_{s}.\cos{\widehat{s}} + \sin{\widehat{s}})\right]}{\left[\mu_{s}\sin{\widehat{p}} - \widehat{S}\right] + \cos{\widehat{s}}(-\widehat{P})}$$
$$N_{1} = \frac{\left[W.\cos{\widehat{s}}\right]}{\left[\mu_{s}\sin{\widehat{p}} - \widehat{S}\right] + \cos{\widehat{s}}(-\widehat{P})}$$
$$N_{2} = \frac{\left[W.\cos{\widehat{s}}\right]}{\left[\mu_{s}\sin{\widehat{p}} - \widehat{S}\right] + \cos{\widehat{s}}(-\widehat{P})}$$
$$F_{1} = \mu_{s}.N_{1}$$
$$F_{2} = \mu_{s}.N_{2}$$

4- At a given P:

$$F_{f} = -\left[\cos\widehat{P} - \widehat{S}\right] + W.si\widehat{B}$$
$$N = \left[\sin\widehat{B} - \widehat{P}\right] + W.co\widehat{S}$$

SAMPLE OUTPUT FROM SAVE OPTION:

Forces (P, N, Ff) are in units of force, ie Newton or Lb force. Angles (angP{P direction} and angS{slope inclination} in degrees. ______ _______ NEW CASE : Parameter Values for Impending Motion : -----System Parameters : -----Incline slope = 31.21 degrees Surface roughness = 0.900Ext Force P magnitude = 100.00 units Force direction = 20.00 degrees Block weight = 147.00 units. Width = 75, Height = 75 pixels Gravitational acceleration g = 9.80Slipping to left: P = 31.99, ang P = 200.0, N = 119.50, Ff = 107.55Slipping to right: P = 163.79, angP = 20.0, N = 119.50, Ff = 107.55 Tipping about 1 : P = 33.57, angP = 200.0, N = 119.19, Ff = 109.11 Tipping about 2 : P = 197.41, ang P = 20.0, N = 164.11, Ff = -117.47***** Tipping case is dominant ***** Currently : P = 100.000, ang P = 20.0, N = 145.167, Ff = 21.915, Ms * N = 130.650